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Abstract

Battery life is an important concern for modern embedded
processors. Supply voltage scaling techniques can provide an
order of magnitude reduction in energy. Current commercial
memory technologies have been limited in the degree of
supply voltage scaling that can be performed if they are
to meet yield and reliability constraints. This has limited
designers from exploring the near threshold operating regions
for embedded processors.

Summarizing prior work we show how proper sizing of
memory cells can guarantee that the memory cell reliability
in the near threshold supply voltage region matches that
of a standard memory cell. However, this robustness comes
with a significant area cost. We show how to employ these
cells to build cache architectures that greatly reduce energy
consumption. We propose an embedded processor based on
these new cache architectures that operates in a low power
mode, with minimal impact on full performance runtime. The
proposed cache uses near threshold tolerant cache ways to
reduce access energy combined with traditional cache ways to
maintain performance. The access policy of the cache ways
is then dynamically reconfigured to obtain energy efficient
performance while minimally impacting the high performance
mode runtime. Using near threshold cache architectures we
show an energy reduction of 53% over a traditional filter
cache. For the MIBench embedded benchmarks we show on
average an 86% (7.3x) reduction in energy while in low power
(10MHz) mode with only an average 2% increase in runtime
in high performance (400MHz) mode. And for Specint ap-
plications we show a 77% (4.4x) reduction in energy in low
power mode with only an average 4.8% increase in runtime
for high performance mode. In addition we show that these
trends hold from 130nm to 45nm technology nodes.

1. Introduction

Power has become a first class design constraint, particu-
larly in processors for embedded applications. New mobile
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devices are demanding more processing capabilities, but
battery lifetime still remains a critical concern. That creates
a need for energy efficient embedded processors capable of
handling a range of application or task performance demands.
The goal of our study is then to design a core that has a high
performance mode that can complete time critical or compute
intensive tasks quickly, but also provides a low power mode
that runs slowly and can complete non-critical tasks in an
energy efficient manner.

The use of near threshold and subthreshold supply voltage
scaling has been the focus of many different studies. Zhai
et al. [26] proposed a subthreshold sensor network processor
and Wang et al. [21] designed a subthreshold chip for FFT
applications. Most of these applications are small and require
little cache/memory space. If these techniques are going to
be used for larger embedded applications that benefit from
significant amounts of cache, then several issues need to be
addressed. Most importantly, because the core and memory
exhibit very different requirements for voltage scaling, they
will need to be handled differently. First logic tends to have
a higher activity factor than memory, leading to a different
optimal supply voltage for a given frequency target. This
justifies the need for a separate supply voltage domain in
order to achieve the optimal energy efficiency [9,24]. Second
logic is more robust under supply voltage scaling, needing
very little additional sizing to maintain yield and function
reliably. Memory cells on the other hand require substantial
resizing in order to maintain reliable operation at low voltages
[25]. Chen et al. [8] describes a method of determining the
cell sizes necessary to maintain the same reliability levels for
several different SRAM cell topologies.

Our study is concerned with the near threshold operating
region, which is just above 400mV for the 130nm technology
node of our study (We also present results for 90nm, 65nm
and 45nm). We do not target subthreshold designs. The
energy savings in the subthreshold region is limited by the
fact that devices slow down exponentially with decrease in
threshold voltage, Figure 2. This leads to extremely slow
operating frequencies that show diminishing returns in energy
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Figure 1. Impact of supply voltage scaling
on delay.
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Figure 2. Impact of supply voltage scaling
on energy.

savings. As the voltage is scaled even deeper into the sub-
threshold region the total energy to complete the task becomes
larger, Figure 1. This happens when the leakage energy of
the circuit begins to dominate the total energy consumption
resulting in a net increase in energy for all lower supply
voltages [6,22]. In addition to this, the required cell sizes for
reliable SRAM operation become extremely large allowing
only small memories on chip.

Using the work done by Chen [8] as a starting point,
we explore memory hierarchies in which some or all of the
memory cells in the system are designed to scale their supply
voltages into the near threshold operating region. This will
allow for increased energy savings in low power mode. We
then revisit the idea of a filter cache [17] in the context of near
threshold operation and supply voltage scaling. We show that
a near threshold filter cache reduces the energy of a traditional
filter cache by 36%. However, the filter cache has the potential
to impact the overall performance of the system in the high
performance mode by increasing the runtime by nearly 20%.
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Figure 3. SRAM Cell area (measured in total transis-
tor width) at different supply voltages to maintain 1SO-
Robustness.

To overcome this we propose a new cache architecture,
the Reconfigurable Energy-efficient Near Threshold (RENT)
cache, that reduces the runtime overhead in high performance
mode while maintaining considerable energy savings in low
power mode. The cache is composed of one near threshold
tolerant cache way and several standard SRAM cache ways.
The near threshold tolerant cache way is accessed in the first
cycle and only on a miss are the other cache ways accessed.
In this manner the near threshold tolerant cache way acts
as a shield to the other cache ways. If the miss rate in
the near threshold tolerant cache way exceeds a threshold,
then the cache is dynamically reconfigured to access all the
cache ways in parallel, providing a single cycle access to
all of the cache space. This will help to almost eliminate
any runtime increase in high performance mode. By using
this technique combined with some advanced access policies
the RENT cache shows a 53% reduction in energy over a
traditional filter cache. This results in a system that provides
a 86% (7.3x) energy savings in low power mode with only an
average 2% increase in runtime in high performance mode.

The rest of the paper is organized as follows. First,
Section 2 will summarize the essential points necessary to
characterize near threshold tolerant memories. Section 3 will
present the proposed architectural solutions that employ these
near threshold tolerant techniques. Section 4 will describe the
methodology, and Section 5 will present the results. We then
finish the paper with a brief discussion of related work in
Section 6, and provide concluding remarks in Section 7.

2. Low Voltage Tolerant SRAM cell design

Supply voltage scaling has been shown to be an effective
way to handle lowering the energy consumption of logic
circuits. There have been several cores built that show a



quadratic savings in dynamic energy consumption with a
delay degradation [21,26]. These designs employ CMOS
circuitry, which is quite resilient to supply voltage scaling.
SRAM memory cells, on the other hand, do not voltage scale
into the near and subthreshold regions as easily. Several ultra-
low energy designs have been implemented [7, 16,20, 23] but
require increased cell size. This increased cell size reduces the
energy gain from supply voltage scaling, because the larger
cells consume more power than the smaller cells. In addition,
when the die size is held constant, the increased cell size
reduces the total overall size of the memory structure. This
increased cell size is done in order to maintain reliability
levels, but until recently there was no formal method to guar-
antee reliable operation in near threshold memory structures.

By modeling process variation, especially random dopant
fluctuations (RDF), and employing a modified Monte Carlo
analysis, Chen et al. showed how to calculate the robustness
of an SRAM cell design at near and subthreshold supply
voltages [8]. Because SRAM cells occur in large arrays,
failure rates must be kept very low to ensure a reliable cache.
For example, for 99% of 8kB caches to be reliable it would
require a bitcell failure rate of less than 1.57 x 10-7.

Among other things, the analysis of [8] calculates the
necessary cell size to maintain the same failure rate as a
standard SRAM cell, termed iso-robustness. In determining
the iso-robust point the transistors are scaled to avoid read,
write, and read-upset failures. The technology node for our
study is 130nm where standard SRAM cells operate with
acceptable reliably down to 800mV. Later we present results
for 90nm, 65nm, and 45nm. For our robustness analysis cells
that operate at supply voltages below 800mV are required
to be sized to match the failure rate of a standard SRAM
cell operating at 800mV. A plot of several different SRAM
topologies is shown in Figure 3. The graph presents the nec-
essary cell-area in terms of total transistor width to maintain
iso-robustness for a given supply voltage. The three lines
in the plot represent a standard 6T SRAM cell, a single-
ended 6T SRAM cell [23] and a 8T SRAM cell [20]. It is
possible to not only pick the proper supply voltage to meet
the delay requirements, but to also pick the SRAM topology
that provides the most area efficient solution.

This analysis has several ramifications for the design of
a low-power embedded microprocessor. The SRAM in these
systems must be designed for reliable operation. Using this
analysis we can determine what size to make an SRAM cell
in order to have it operate reliably down to a given supply
voltage. The increased cell size will affect performance of
a cache in two main ways. First at full supply voltage the
SRAM cell will consume more energy and be slightly slower
due to the increased size. Body-biasing techniques can be
employed to regain speed, but at the cost of additional energy
consumption. Secondly, there will be less total cache in the
same die space. If we are given a design frequency to target,
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Figure 4. Near threshold filter cache architectures (a)
with and (b) without bypass networks.

it is critical that we perform the proper analysis to avoid
oversizing the SRAM cell and reduce the performance of the
chip in non-power saving mode. Conversely it is important
not to undersize the cell and increase reliability problems in
power savings mode.

3. Energy Efficient Cache Architectures

The ability to voltage and frequency scale cores has pro-
vided an order of magnitude savings in energy [21,25,26].
However, supply voltage scaling of the memory system has
been limited by the tolerance of the SRAM cell. If we use the
SRAM cells discussed in Section 2, in combination with a
voltage and frequency scaled core, even more energy savings
could be possible. The goal of our design is to create a chip
that can operate in two distinct modes. The first is a high
performance mode where the system is fully powered and the
core runs at a high frequency. The second mode is a power
savings mode. In this mode the chip is frequency scaled to
a slower performance target, and the supply voltage can then
be dropped to reduce energy consumption.

Due to the differing activity factors for logic and memory,
the core and caches need to be operated in different voltage
domains [9,24]. In addition, providing two memory voltage
domains will allow more complex architectures that involve
both near threshold tolerant SRAM, and standard SRAM. The
near threshold tolerant SRAM will be used to create energy
efficiency, while the standard SRAM will help to provide
larger capacity on chip since they will not need to have
their size increased to maintain reliability. This requires the
addition of at most two additional supply voltage domains to
the chip and associated voltage level converters. A diagram
of the regions in which a chip might be partitioned is shown



in Figure 4(a and b). In the figure, the core is operated in
one supply voltage domain, the filter cache in a separate near
threshold tolerant SRAM cell domain, and the L1 in a third
domain. Level converters are used to cross the dotted lines
separating the voltage domains.

These changes to the chip and SRAM cell design provide
opportunities to explore more energy efficient cache hier-
archies. Simply using near threshold tolerant cells in place
of current cells will allow the caches in a system to scale
to much lower supply voltages, creating a dynamic energy
savings at low frequencies. However the increase in the cell
size will drastically reduce the total amount of cache available
when the die size is held constant. This will negatively
impact performance by increasing the number of off-chip
accesses, which require large amounts of energy and have
a long latency. This increase in latency will in turn slow the
completion of the program, and prolong the leakage energy.
At high frequencies, when the cache is operating at full
supply voltage the energy per access of the cache will also
be increased due to the larger cell sizes required to meet the
iso-failure conditions set forth in Section 2 and will need to
be operated at a higher supply voltage or body bias in order
to operate at the same speed. In the following sub-sections
three techniques will be discussed for better use of the near
threshold tolerant SRAM cells to reduce energy consumption.

3.1. Near Threshold Filter Cache

Filter caches, a technique proposed in [17,19], is a method
to reduce cache energy. The idea behind filter caches is to
place a small, low energy per access, cache in between the
processor and the L1 cache. This cache then filters access to
the larger, more energy hungry, L1 cache. Employing near
threshold tolerant SRAM cells to design a filter cache would
further reduce the energy even more. A diagram of what a
near threshold filter cache architecture would look like is
shown in Figure 4(a).

The main drawback to using filter caches is that if the
memory access pattern creates a high miss rate in the filter
cache, then the overall system energy goes back up due to
the additional miss that causes an access to the L1 cache.
The system performance is also degraded because all cache
accesses that miss in the filter cache but hit in the L1 cache
take two cycles instead of one. To overcome these drawbacks
a simple bypass network could be employed to bypass the
filter cache when the miss rate in the filter cache is too high.
Figure 4(b) provides an illustration of what a bypass filter
cache would look like. This bypass filter cache also presents
some drawbacks. First, in order to save energy the filter
cache needs to operate with a writeback policy instead of a
writethroough. This means when the filter cache is bypassed,
the entire filter cache must be flushed and written back. In
addition, it is difficult to track when the bypass network
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Figure 5. Cache architecture of the RENT cache.

Hit?

should be turned off, since it is difficult to approximate
performance of the filter cache. These two complications
prevent more aggressive dynamic adjustment of the use of
the bypass network.

3.2. Reconfigurable Energy-Efficient Near Thresh-
old (RENT) Caches

Although naively employing a near threshold filter cache
provides great energy savings, there are new architectures that
can provide even further savings. An additional drawback of
the bypass filter cache design is that when the filter cache
is being bypassed, a portion of the cache space is not being
used. That means there is effectively less total cache space
on the chip, leading to a larger number of off-chip accesses.
These off-chip accesses require large amounts of energy and
have a long latency. These longer latencies lead to an increase
in runtime for the program, prolonging leakage energy and
degrading performance. In order to minimize the amount of
cache space lost and the performance degradation that occurs
from using near threshold tolerant SRAM cells, while still
maintaining the energy efficiency of the filter cache, a new
cache architecture is proposed based on the work done in [1,
2,14,18].

The proposed architecture is called the Reconfigurable
Energy-efficient Near Threshold (RENT) cache. A diagram
of the cache structure is presented in Figure 5. The basic
premise behind the cache is as follows: There is one way of
the cache and tags that is implemented with near threshold
tolerant SRAM cells. The other ways of the cache and tags
are implemented with standard SRAM cells. The cache will
be operated in two distinct modes. We call these modes
conventional and filtered. In the conventional mode the cache
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Figure 6. RENT cache access policy flow charts for (a)
conventional mode and (b) filtered mode.

is accessed in the regular manner. That is, the index portion
of the address reads out all the cache tags and data from each
way in parallel. The tags are then matched with the incoming
address and the appropriate way of the cache is enabled to the
output data bus. The new mode of operation, filtered mode,
is designed to act like a filter cache. When filtered mode is in
use only the first way, the near threshold tolerant way, of the
cache and tags are accessed on the first cycle, via the enable
1 signal. If there is a hit, the cache will return the data and
energy will be saved by only accessing this one way of the
cache. If there is a miss on this first cycle access, then the
data and tag from the near threshold tolerant way is stored in
a swap buffer. The enable 2 signal is then used and the rest of
the cache is checked for a hit. If a hit is found it is both gated
onto the data bus and written to the near threshold tolerant
way along with its tag. On a subsequent cycle the data and
tag stored in the swap buffer is then written into the cache
way where the hit occurred. This action essentially swaps
the value in the near threshold tolerant way and the way in
which there was a hit. This ensures that the most recently used
(MRU) block is in the near threshold tolerant cache way. This
swapping action is similar to the writeback buffer in the filter
cache, and the design is no more complicated than creating an
exclusive filter cache. Figure 6 shows a flowchart of the two
access modes. This addresses two of the drawbacks of the
bypass filter cache. First, it utilizes the low voltage tolerant
SRAM cells, even when in high performance mode leading
to more on-chip cache. Second, it prevents the flushing action
required when switching modes, since the data in the cache
ways is still available in high performance mode, unlike the
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Figure 7. Architecture of the alternative RENT cache.

filter cache when it is bypassed. It does however present
to trade-offs. First, the near-threshold tolerant cache ways
will consume more energy at full voltage because they are
larger with more capacitance and need to be operated with
body-biasing to achieve the same speed. Second, the swap
mechanism requires an additional cycle to complete some
cache accesses, prolonging execution time in filtered mode.

Changing from conventional mode to filtered mode could
be identified explicitly by the programmer, but greater savings
could be achieved if the cache was allowed to choose oper-
ating modes dynamically based on performance. This would
allow the cache to adapt to different program phases. It is
relatively easy to decide when to switch from filtered mode
to conventional mode. A counter can be used to monitor the
hit rate of the near threshold tolerant way, when the hit rate
drops below a predefined threshold the cache changes modes.
It is harder to decide when to transition back to the filtered
mode of operation. In order to determine when to switch,
we make use of some information from the replacement
policy. If the cache is using a pseudo least recently used
(LRU) replacement policy we can easily determine the MRU
block. This is due to the fact that the pseudo-LRU policy
always identifies the MRU block in the cache tags. If we
track the number of times the cache hits on an MRU block
and compare it to the number of times the cache hits on
any non-MRU block we can calculate what the miss rate
would have been for the near threshold tolerant cache way.
This follows because the MRU block would be in the near
threshold tolerant cache way in filtered mode. When this hit
rate exceeds some threshold, we can switch back to filtered
operation. In both cases, after a switch has occurred a suitable
number of accesses must be completed to allow the cache



to reach a steady state before changing modes again. These
methods incur very little overhead, just two counters to track
accesses and MRU/filter hits. A similar approach can be found
in the work done by Dropsho et al. [10] This addresses the
final drawback of the bypass filter cache, by allowing more
aggressive mode transitions.

3.3. Alternative RENT Caches

Further possible improvements can be made to the RENT
cache to reduce energy consumption. Notice that in filtered
mode we access the additional ways of the cache in the
second cycle. If instead we had used the first cycle to check
not only the first set of tags, but all the other cache tags in
the set as well, we could know by the second cycle the way
in which the data we seek resides. The modified architecture
is presented in Figure 7. In this case we make all the tags
using near threshold tolerant SRAM cells and access them all
on the first cycle. In parallel with the tag check we access the
near threshold tolerant way of the data cache. If there is a hit
in the near threshold tolerant way the data can be provided
in a single cycle, as before. If there is a miss, the tag check
will provide which conventional way of the cache we should
access on the second cycle. This reduces the energy consumed
because on the second cycle only one way of the conventional
cache is accessed. The flip-flops shown in Figure 7 are used
to delay the enable of the conventional ways until the next
cycle. There is also the added benefit of knowing if the cache
will miss after the first cycle. In this case an access to the next
level of memory can be initiated one cycle earlier, reducing
the off-chip access time by one cycle. Of course we are
trading off the energy reduction of accessing all the additional
ways of the cache with the increase in energy for the tag look
up. If the conventional ways of the cache are rarely accessed
then the system may consume more energy with this design.

4. Methodology

A system with two different operating modes was created.
The first was a 400 MHz full power mode. The frequency
was determined by the ARM9 CPU model used for energy
analysis, the details of which were obtained from consultation
with the chip designers. The second mode, a low power
mode, was chosen to operate at a 10 MHz clock frequency.
This operating frequency was picked to provide a significant
energy savings while still being fast enough to handle a wide
range of simpler applications. A summary of the resultant
design parameters for the system is in Table 1. For this study
we use a system with a split instruction and data cache, but to
limit the analysis space we kept the same sizes and types of
caches for both the instruction and data memory hierarchies.
For all comparisons the die size was held constant.
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4.1. Simulation Environment

For simulation we use a modified version of the M5
simulator [5]. The simulator was modified to incorporate the
dynamic and leakage energy modeling necessary to determine
the energy of the overall system.

4.2. Benchmarks

For the simulation we use the MiBench benchmarks [12].
These benchmarks are small embedded system benchmarks
and represent a range of applications, from automotive to
encryption. A subset of benchmarks that compiled to the
target architecture were run to completion for all test cases
using the reduced input sets. Further analysis was done using
the complete SpecInt 2000 benchmarks [13]. This analysis
shows similar results as the MiBench studies and is briefly
presented at the end of the results section.

4.3. Energy Models

We create accurate energy consumption models for the
system using SPICE analysis coupled with iso-robustness
analysis. We account for CPU, cache, bus, level converter, and
oft-chip access energy in the analysis. All data presented is
using a commercial 130nm process, some additional analysis
was done to verify that the results we show still hold for
90nm, 65nm, and 45nm. The results of that comparison are
presented in Section 5.6.

4.3.1. Cache Model. We use the iso-robustness analysis
method discussed in Section 2, assuming that standard SRAM
cells can operate reliably down to 800mV, to determine the
appropriate cell size to meet the delay of the core and iso-
robustness reliability constraint for any near threshold SRAM
cells. We then use SPICE modeling on the SRAM cell to
determine the dynamic and leakage energy consumption of
the cell at different operating points. We account for the
energy in the data and tag arrays of the cache as well as any
decoders associated with the cache. However we do not model
the cache controller energy. This will result in our energy
figures being slightly lower than a real system. We have
simulated and accounted for the energy and additional cycle
latency of the swap buffer. The use of body-bias techniques
is assumed in our experiments to reduce the cache leakage
energy, or to meet timing constraints.

4.3.2. CPU Model. For our CPU model, we base the core
energy consumption numbers from a cacheless 400MHz
ARMO core. We use SPICE simulation of some representative
smaller CMOS circuitry in order to determine the impact of
voltage and frequency scaling on the core for both dynamic
and leakage energy. The core used is extremely aggressive



Simulation Parameters \

Traditional Near Threshold
Baseline Filter Cache Filter Cache
10Mhz 400MHz 10MHz 400MHz 10MHz 400MHz

Core Voltage 450mV 1.2V 450mV 1.2V 450mV 1.2V
Filter Cache Voltage N/A 800mV 1.2V* 500mV 1.2V*
Filter Cache Size N/A 1 kB 512 B
L1 Cache Voltage 800mV \ 1.1V 800mV 1.1V 800mV 1.1V
L1 Cache Size 8 kB 7 kB 7 kB
L1 Cache Ways 8 7 7

Table 1. Simulated System Parameters. *Body-Biasing used to meet timing constraints.

with many structures removed to reduce energy. Amdahl’s law
prohibits the energy savings seen if the core energy is higher,
but even in a baseline system with a core that consumes
60% of the total power our techniques still show significant
improvements.

4.3.3. Off-Chip Energy. The off-chip latency was derived for
a memory system composed of SRAM for data, and ROM for
instructions. This is a typical setup for an embedded system,
and the latency was 20 cycles at 400 MHz. The energy
consumed in the package and a reasonable amount of off-chip
routing is accounted for in all the measurements. However,
the energy of the off-chip memory itself is not accounted
for in the simulation as the size of this could vary widely
depending on the application. A designer could use our
figures as part of their total power/performance calculations.

5. Results

5.1. Filter Cache

The first analysis to be performed was on the simple near
threshold filter cache. The first step was to determine the
L1 size for the baseline system without a filter cache that
provided the lowest energy solution. A sweep of L1 sizes
and associativities yielded an optimal size of an 8kB, §8-way
cache for the MiBench benchmarks. Then, while holding
the die size constant the lowest energy system with a near
threshold filter cache size was determined. The analysis was
done keeping in mind that the size of the near threshold filter
cache SRAM cells are larger in size than the standard ones
used in the L1 cache. Across the benchmarks the optimal
size was a filter cache of either 512 B or 1 kB. For our
studies we chose a 512 B filter cache and a 7kB, 7-way
L1 cache. For comparison we also evaluate a filter cache
designed with standard SRAM cells, which do not support
voltage scaling below 800mV. We term this configuration a
traditional filter cache. It has a 1 kB filter cache and a 7kB,
7-way L1 cache. A larger filter cache is possible in this case
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because the SRAM cells do not have to be sized to operate at
lower supply voltages. A summary of the baseline and filter
cache systems can be found in Table 1. For the initial results
we do not use the bypass method described in Section 3.1, the
impact of using a bypass on the filter cache will be evaluated
in Section 5.1.2.
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Figure 8. Filter cache energy breakdown for BitCount
benchmark.

5.1.1. Without Bypass. The results of the analysis are
presented in Figure 8. In the figure there are 6 bars, the top 3
bars are for the system at 400 MHz and the bottom 3 are for
the system at 10 MHz. The bars present the total energy of
the system divided by the number of instructions completed.
We illustrate the analysis with the BitCount benchmark. The
first thing to note is that by simply using voltage scaling on
the baseline system we can reduce the energy consumption
to complete this benchmark by 60% (3rd bar vs. 6th bar). It
can also be seen that, because we are able to more aggres-
sively voltage scale the core, the cache quickly becomes the
dominant energy source at low frequencies. From the figure
it can be seen that the IL1 consumes most of the energy
in the memory system for BitCount. Using a filter cache
dramatically reduces this IL1 dynamic energy by shielding
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Figure 9. Filter cache energy for BitCount benchmark
(Zoomed In).

the IL1 with a small filter cache. This results in a 73% (2nd
and 3rd bars) reduction in energy at 400MHz and a 82%
reduction in energy at 10 MHz (5th and 6th bars) over their
equivalent speed baseline counterparts.

Figure 9 presents a zoomed in portion of Figure 8 to help
better see the shorter bars. The addition of near threshold
supply voltage scaling capabilities on the filter cache does two
things. First, it reduces the energy consumption at 10 MHz
a further 45% over the traditional filter cache. Second, due
to the larger cell sizes, the energy at 400 MHz is increased
by around 1%. This increase is mitigated by the fact that
although the near threshold filter cache has larger cell sizes,
there are only half as many cells as the traditional filter cache
(see Table 1).

Figure 10 shows additional benchmarks from the MiBench
suite and the performance of the near threshold filter cache.
Figure 11 shows how the near threshold filter cache’s energy
consumption compares to the traditional filter cache and the
baseline at 10 MHz. On average the near threshold voltage
scaled filter cache shows an 84% reduction in energy over the
baseline at 10 MHz, and a 36% reduction over a traditional
filter cache.

5.1.2. With Bypass. The filter cache does present some
drawbacks. As mentioned in Section 3.1 the existence of the
filter cache can degrade performance when the miss rate in
the filter cache is high. Figure 12 presents the increase in
runtime that occurs over the baseline system when a filter
cache is used. Note that for this analysis we used a filter
cache size of 1kB and a 6kB, 6-way L1 so that we can
compare equal die size RENT caches in Section 5.2. On
average a 17% increase in runtime occurs with a standard
deviation of 9%. The worst case was a 29% increase in
runtime for the Patricia benchmark. In order to reduce the
runtime increase a bypass network can be employed which
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is enabled when the miss rate is high. The operation of the
bypass filter cache is described in Section 3.1. Figure 12 also
shows the resultant runtime when the bypass network is used.
Notice that now the average runtime increase is only 3.3%
with a 5.6% standard deviation. The benchmarks that still
have a significant increase in runtime happen as a result of
having a working set that is larger than the L1 cache. This
leads to additional off-chip accesses which are long latency.
Those benchmarks would benefit from being able to utilize
the cache space that is being disabled by the bypass network.

5.2. RENT Cache

Using the RENT cache we are able to increase the cache
capacity on chip when running in the conventional mode.
The simulation configuration is slightly different because all
ways in the cache should be the same size. The resultant
cache sizes are presented in Table 2, notice that the near
threshold tolerant cache way requires about the same space
as two conventional cache ways and so the total cache size
is decreased. This is an improvement over the bypass cache
because it allows the benchmark to utilize more of the cache
on chip in conventional mode-7kB. In addition the cache is
also able to adapt dynamically to different phases of program
behavior. The third bar in Figure 12 shows that with the use
of the RENT cache we reduce the runtime overhead even
further. The average increase is now just 2.1% on average
with a 4.4% standard deviation. The use of the RENT cache
has also kept the energy consumption at the same level in the
low power mode as the bypass filter cache.
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Baseline | RENT Cache
# of Near Threshold Ways 0 1 x 1kB
# of Conventional Ways 8 x 1kB 6 x 1kB
Table 2. Simulated System Parameters for RENT
Cache

5.3. Alternative RENT Cache

Using the alternative RENT cache the energy savings can
be even greater. The die size is slightly larger to accommodate
the near threshold tags, but was not significant enough
to justify the removal of another full data cache way. In
Figure 13(a) the basic and alternative version of the RENT
cache are compared across the MiBench benchmarks. For
almost all the cases there is a decrease in total energy. A
blown-up detailed view of the Patricia benchmark is presented
in Figure 13(c). It clearly shows a reduction in the energy of
the conventional ways of the cache. The dynamic energy to
the near threshold portion of the cache is increased due to
the additional tag checks. In this case the decrease in the
conventional access energy outweighed the increase in the
tags and the alternative method was better. In Figure 13(b)
we present a case in which the basic RENT cache outperforms
the alternative version, the BitCount benchmark. In this
case there was already very little conventional way dynamic
energy and the increase in the filter way dynamic energy from
the additional tag accesses was too large for the alternative
method to be more energy efficient. Note that in all cases
there is a slight reduction in runtime and therefore a small
reduction in the leakage energy for all the alternative RENT
cache methods. This reduction in runtime comes from being
able to issue off-chip requests after the first cycle instead
of the second cycle, thus reducing the total runtime by one
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Figure 14. Energy breakdowns for the GZIP benchmark.

cycle per off-chip access. It is hard to see this decrease in the
graph, but the data confirms this expected result. From Figure
11, on average the alternative RENT cache policy provides
an additional 27% average energy reduction over the basic
RENT cache, 54% over the traditional filter cache, and an
88% over the baseline at 10MHz.

5.4. Spec2000 Analysis

Analysis was also done using the SPECINT benchmarks.
Figure 14 shows the energy breakdown of the GZIP bench-
mark for the traditional and near threshold filter caches. No-
tice that even for these larger benchmarks we are still seeing
a 34% reduction in energy using the near threshold SRAM
cells. Figure 15 and Figure 16 show the energy breakdowns of
the 10MHz basic and alternative RENT caches. We still show
significant energy reductions using the alternative policy for
the SpecInt benchmarks. Overall we see a 57% reduction on
average using the alternative RENT cache over a traditional
filter cache at 10MHz.

5.5. Power Savings Mode

The power savings figures are calculated by taking the
energy consumption of the alternative rent cache in the
low power mode, 10MHz, and comparing that to the high
performance mode, 400MHz. For the MiBench benchmarks
on average we show an 86% (7.3x) reduction in energy when
operating in low power mode, with only a 2% increase in run-
time in high performance mode. For the SpecInt benchmarks
we show on average a 77% (4.4x) reduction in energy in low
power mode with only an average 4.8% increase in runtime
while in the high performance mode.
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5.6. Technology Node Comparison

Additionally we verified that the trends still hold in smaller
technology nodes. Figure 17 shows the average MIBench
performance at different technology nodes for both the RENT
and alternative RENT cache. The bars are normalized to the
performance of the baseline in the low power mode at the
same technology node (i.e. 45nm RENT cache is normalized
to 45nm Baseline). From the graphs you can see that we are
still seeing a 88-90% reduction in cache energy for the basic
RENT cache across all nodes. The breakdown of where the
energy goes shifts to leakage at smaller nodes, but the same
overall trends hold.

Each technology node has a different optimal voltage
and frequency for both the low power mode and the high
performance mode, space limits us from presenting them.
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5.7. Additional Analysis

A number of additional experiments were run, but again
space limits what we can show. These experiments included
sensitivity analysis for the off-chip latency and energy con-
sumption numbers, drowsy cache techniques [15], and 1MHz
subthreshold designs.

6. Related Work

There has been a significant amount of work done in the
area of energy efficient cache architectures, particularly for
embedded applications. Our work differs from the previous
work in that we specifically use a near threshold tolerant
SRAM design to explore cache architectures that can scale
into the near threshold operating region. This results in
significant energy savings of 36% over a traditional filter
cache. The original work on filter caches was presented by
Kin et al. [17], and Tang et al. [19] expanded on that work by
creating a prediction network that would allow the instruction
filter cache to be bypassed.

Further work in the reduction of cache energy was done by
Albonesi [1]. That work proposes a cache that reconfigures
itself to be optimal in size. This is achieved by enabling and
disabling ways of the cache. This work is orthogonal to the
work we present, and could be used to further improve energy
performance by disabling cache ways for applications with
small working sets. Inoue et al. investigated the idea of way
prediction [14] and Powell et al. [18] expanded on it. In their
work only the predicted way is accessed on the first cycle,
after which the other ways are accessed. This is similar to the
RENT cache in that we are only accessing one way of the
cache on the first cycle. Our work differs because we always
start with the near threshold tolerant way of the cache and
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swap the MRU block into that way of the cache. This helps
to leverage the low energy of accessing this way of the cache.
Zhang [27] proposes a multi-column cache to reduce energy,
this work expands on the idea of way-prediction focused
mainly on the MRU way of the cache. Zhang performs
swapping of the MRU block into the next predicted way,
although this is not guaranteed to be the first way. Thus,
preventing it from being used with the near-threshold SRAM
cells. Zhu’s [29] work most closely resembles our work in
that it focuses on alternating access patterns to the cache
based on performance to achieve energy optimality. However
Zhu’s work builds on that of Zhang and, again, because the
predicted way is not always in the same place near-threshold
techniques do not work. Lastly, Zheng [28] proposes a cache
that uses way concatenation to help reconfigure the cache into
the optimal energy configuration.

In addition there have been several studies investigating
the trade-offs of swapping cache locations. The work done
by Balasubramonian [2] and Dropsho [10] are similar to the
work proposed in the RENT and alternative RENT cache
design. These ideas however suffered from the fact that the
swap mechanism was energy hungry and the ideas were
passed over for more complicated designs. Batson [4] did
an investigation of such techniques and found the energy
performed from swapping outweighed the gains of hitting on
a prediction. However this pertained to standard SRAM cells,
if the energy savings of the prediction is increased using near-
threshold SRAM, this trade-off favors the use of swapping as
was shown by our results. This coupled with the fact that
more recent techniques can not be done using near-threshold
techniques efficiently reinstates these previous ideas in the
new context of near-threshold computing.

Additional work was done looking at caches with cache
ways of different latencies. Fujii [11] and Balasurbramo-
nian[3] both look at techniques where low energy cache ways
are used and operated at slower speeds. And faster, high
energy cache ways are accessed first or by hot addresses
streams. Their focus is on much larger caches and the
reduction of leakage energy. Their work differs in that they
focus on using low energy cache ways second after the access
to the high energy way, or place hot frequent accesses in
the high energy way and cold infrequent accesses in the low
energy way. Whereas we perform the lookup in the opposite
order.

There has also been a large number of studies on sub-
threshold and near-threshold systems [9,21,24,26]. These
studies, however, focus on small performance targets or chip
multiprocessing, unlike our system which targets a single
general purpose core that can operate in both low power
mode and high performance mode. There has also been
substantial work on subthreshold and near threshold SRAM
design [7,16,20,23], but none of these considers potential
cache architectures for embedded applications.



7. Conclusion

Embedded processors, particularly for mobile applications,
are requiring ever increasing performance but still have
battery lifetime as a critical design parameter. In this work
we propose an embedded processor with a high performance
mode to handle time sensitive and compute intensive work,
and a low power mode which can complete non-critical
tasks in an energy efficient manner. To achieve this we
investigate near threshold tolerant memory structures coupled
with voltage and frequency scaling.

We propose the RENT cache to provide both a significant
reduction in energy in low power mode without penalizing
runtime in high performance mode. The cache is designed
with one near threshold voltage tolerant cache way to filter
accesses to the rest of the cache. This cache way is accessed
first, and only on a miss are the other cache ways accessed.
If the miss rate in the near threshold cache way becomes
to large and degrades performance the cache is dynamically
reconfigured to act like a conventional cache, where all the
cache ways are accessed in parallel. This changes the cache to
have a uniform, single cycle hit latency. Using this technique
we show a 53% reduction in energy over a traditional filter
cache. This leads to a system that provides a 86% (7.3x)
reduction in energy while in low power mode with only a
2% increase in runtime in high performance mode.
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